※ 超导和低温
一般材料(除半导体以外)的电阻随温度降低而减小,当温度降得很低时,某些材料的电阻会完全消失,这种现象称为超导性。出现超导性的这个最高温度称为该材料的超导临界温度。超导性的发现为电的利用打开了一个新大地。回为电阻为零,只要施加一个很小的电压就可以产生十分巨大(理论上是无限大)的电流,获得巨大的磁场和磁力;或者当电流通过它时,不发生电压的降低和电能的损耗。显然它的实际应用将会引起人类在生产和生活上的变革,很受人们的关注。
但是对通常的金属来说,只有当温度降低到十分接近绝对零度(OK=一 273 °C)时才出现超导性,在工程上很难实现。近年来已开发出一些超导合金,它们的临界温度比纯金属的高,例如,Nb3 Sn合金为18.1K。但是它们的应用一点也离不开铜。首先是这些合金要在超低温下工作,要通过气体的液化来获得低温,例如:液氦、液氢和液氮的液化温度分别为4K(一269℃)、20K(一253℃)和77K(一 196℃)。铜在这样低的温度下仍有良好的韧塑性,是低温工程中不可缺少的结构和管路输送材料。此外,Nb3 Sn、NbTi等超导合金很脆,难以加工成型材,需用钢做包套材料把它们结合起来。目前这些超导材料已用于制作强磁体,在医疗诊断的核磁共振仪以及某些矿山强力磁选机上得到了应用。正在筹划中的,时速超过500公里的磁浮列车,也要依靠这些超导材料磁体把列车悬浮起来,避免轮轨接触的阻力,而实现车厢的高速运行。
最近发现了一些临界温度更高的材料,称为"高温超导材料",它们大多是复合氧化物。较早发现和比较著名的一种是含铅的铜基氧化物( YB2 Cu3 O7),临界温度为90K,可以在液氮温度下工作。目前还没有获得临界温度在室温附近的材料;而且这些材料难于做成大块物体,它们能通过可保持超导性的电流密度也不够高。因此,目前还未能在强电的场合下应用,有待进一步研究开发。
※ 航天技术
火箭、卫星和航天飞机中,除了微电子控制系统和仪器、仪表设备以外,许多关键性的部件也要用到铜和铜合金。例如:火箭发动机的燃烧室和推力室的内村,可以利用钢的优良导热性来进行冷却,以保持温度在允许的范围内。亚里安那5号火箭的燃烧室内村,用的是铜一银一结合金,在这个村简内加工出360个冷却通道,火箭发射时通入液态氢进行冷却。
此外,铜合金也是卫星结构中承载构件用的标准材料。卫星上的太阳翼板通常是由铜与其它几个元素的合金制成的。
※ 高能物理
揭示物质结构之谜是科学家孜孜以求的重大基础课题。对这个问题的认识每深入一步,都会给人类带来重大的影响。当前原子能的利用就是一个例子。近代物理的最新研究业己发现,物质的最小构成单元不是分子和原子而是比它小亿倍的夸克和轻子。现在对这些基本粒子的研究往往要在比原子弹爆炸时的核作用高数百倍的极高反应能下进行,称为高能物理。这样高的能量是通过带电粒子在强磁场内,经过长距离加速,向固定的靶"轰击"而获得(高能加速器),或者两个相反方向加速运动的粒子流互相对撞而获得(对撞机)。为此,需要用钢作绕组构筑出长距离的强磁场通道。此外,在受控热核反应装置中也要有类似的结构。为了降低由于通过大电流的发热温升,这些磁通道由中空的异型铜棒绕成,以便通入介质进行冷却。
例如:著名的欧洲卢瑟福高能物理实验室中的质子同步加速器,它的水冷磁体由中空的铜管统成,共计使用约 300吨的铜挤压材。1984年我国建成的重粒子加速器,用去每根40米长、外矩内圆的管材共46吨。在此以后建成的正负电子对撞机中,应用这类铜管105吨。在我国研制的受控热核反应装置中,共有16个聚焦线圈。每个线圈用长度55米的铜条绕成。壳体用钢板焊接而成,其上焊有冷却水管。在该装置上共计用钢 50吨。